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Abstract— Overhanging machine components are mostly susceptible to vibrations and hence are critical from design view point. These 
overhanging components can be generalized as a cantilever beam. Cantilever beam problem is taken as a case study in this paper as the 
analytical results are easily available. Most often the classical Experimental Modal Analysis (EMA) cannot be used in such cases as the 
exact operating and boundary conditions are critical for better accuracy in modal parameters extraction. In this paper, Operational Modal 
Analysis (OMA) is considered as a substitute for EMA. OMA uses data measured at the response points and the requirement of the 
excitation data is eliminated and hence the data can be collected under operating conditions. A comparative analysis of analytical results 
and classical EMA is presented. The datasets collected using hammer tips with different hardness are considered for extracting first five 
modes of cantilever beam using EMA. Based on this study, a particular hammer tip dataset is selected for each mode, which is further 
considered for OMA. Five different OMA techniques are established using this case study. This is followed by a comparative study of 
classical EMA with the five different OMA techniques.  

Index Terms— Overhanging Machine Component, Cantilever Beam, Comparative Study, Experimental Modal Analysis, Modal Assurance 
Criteria, Operational Modal Analysis.   

——————————      —————————— 

1 INTRODUCTION                                                                     
ODAL ANALYSIS is fundamental for vibration analysis 
and forms backbone for advancements in vibration 
analysis. The overhanging machine components are 

susceptible to vibrations and thus become critical from design 
point of view. The simulation of the operating and boundary 
conditions, are critical for the accuracy of modal parameter 
extraction. The overhanging machine components can be 
generalized as a cantilever beam. Cantilever beam is used in 
this study due to the easiness in understanding many 
fundamental facts in vibration analysis. This paper studies the 
analytical and experimental techniques in modal analysis 
using a cantilever beam. Apart from classical Experimental 
Modal Analysis (EMA), a few algorithms in Operational 
Modal Analysis (OMA), Rainieri [1], are studied.  

Many significant developments in OMA have started since 
1990s. However, OMA was used during ancient times to 
understand the dynamic behavior of a system. It is well 
known that the Greek philosopher Pythagoras studied the 
origin of musical sound using strings. This technique was 
nothing but applied OMA, though it was not developed 
systematically then. Similarly, other scientists like Galileo, 
Daniel Bernoulli and Newton, who have also contributed their 
theories in the vibrations domain, have used OMA in their 
experiments in one form or other, Brincker [2]. 

The systematic development in OMA started around 1994 
when the damage done due to Northridge earthquake was 
studied. Most of the development in OMA started with time-
domain techniques such as NExT method. During the late 
twentieth century a comparative study of the peak-picking 
method, the polyreference LSCE and the stochastic subspace 
identification methods was presented in, Peeters [3]. The 
application of these stochastic subspace identification methods 
along with the NExT technique was presented in, Hermans 
[4]. OMA finds direct application in the structural health 

monitoring (SHM) and damage detection of the structures. 
Vibration modes of a cantilever beam are used for 

identifying crack location, Rizos [5], Kumar [6]. Data obtained 
using laser vibrometer for a cantilever beam is analyzed using 
EMA, Sharma [7]. The dynamics of cantilever beam are 
studied by, Kane [8], for a dual purpose. Firstly for studying 
behavior of the rotor blades, spacecraft antenna, etc. and 
secondly to find flaws in existing multibody computer 
algorithms. Another study of rotating cantilever beam was 
carried to find the tuned angular speed at which the resonance 
occurs, Yoo [9]. 

This paper aims at a comparative study of the analytical 
and experimental methods of modal analysis. The results 
obtained using classical EMA are compared with the 
analytical results. The results obtained using OMA are then 
compared with the results obtained using EMA. In practice, 
analytical solutions are rarely available and hence EMA 
becomes important. In classical EMA the structure is excited 
using hammer or shaker, but this is a limitation especially in 
case of big structures. The boundary conditions used in the 
laboratory testing are different from those under working 
situations. Hence OMA give a solution to these problems as 
OMA is a technique which uses only response data for 
extracting the natural frequencies and the mode shapes, and 
thus replaces EMA under such situations.  

2 THEORETICAL BACKGROUND 
2.1 Analytical Method 
The analytical solution for the natural frequencies of a 
cantilever beam are computed as given in Inman [10], 
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The mode shape for the cantilever beam is expressed as, 
x) cos x (cosh   x)sinh  x (sin   (x) U nnnnnn ββββσ +++=

The values of nσ  and nβ l, where l is the length of the beam, 
are tabulated in Table 1. 
Table 1: Values for Fixed-Free Beam 

n  nσ  nβ l 
1  0.734

1  1.87510407 

2  1.018
5  4.69409113 

3  0.999
2  7.85475744 

4  1.000
0  

10.9955407
3 

5  0.999
9  

14.1371683
9 

2.2 Experimental Modal Analysis (EMA) 
The frequency response function (FRF) is expressed as, Heylen 
[11],  
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At resonance the complex conjugate part becomes negligible, 
therefore the FRF is expressed as, 
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The imaginary component contains the modal information 
and the real component contains the damping information. At 
resonance the value of FRF is maximum and thus the 
maximum value gives the amplitude of the mode shape at a 
given location and corresponding frequency is the natural 
frequency. 

2.3 Operational Modal Analysis (OMA) 

2.3.1 Basic Frequency Domain Method 
The Basic Frequency Domain (BFD) Method is based on the 
fact that at resonance only one mode is dominant. At 
resonance the structural response can be considered as the 
modal response, Felber [12]. 

)()( tptx rrφ=  

Where )(tpr  is the modal coordinate and rφ  the mode 
shape for the r-th mode. BFD Method use the 
correlation functions. The power spectral density (PSD) 
matrix is given by, 

H
rrPPYY rr

GG φφωω )()( =  

The PSD matrix has rank one at resonance and any of the 
PSD matrix column give the mode shape. The BFD method 
gives greater accuracy when the damping is low and the 
modes are well separated. This is a useful tool to get a quick 
insight about effectiveness of measurements. 

2.3.2 Frequency Domain Decomposition Method 
The Frequency Domain Decomposition (FDD) Method, 
Brincker [13], is a useful technique to identify closely spaced 
modes. We have the PSD matrix given as, 

H
rrPPYY rr

GG φφωω )()( =  

The singular value decomposition (SVD) of the PSD matrix is 
given by 

H
YY VUG ]][][[)( Σ=ω  
The singular value matrix [Ʃ] gives the active natural 

frequencies in the response and the corresponding column 
of [U], gives the mode shape. 

2.3.3 Least Square Complex Exponential Method 
Least Square Complex Exponential (LSCE) Method, Mohanty 
[14], is basically a curve-fitting algorithm for extracting modal 
parameters from the correlation functions. The measured 
response data is a discrete time data. The correlation for this 
data can be expressed as summation of decaying sinusoids. 
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Where 
n = 2Nm = number of modes 
Cij,r is constant for r-th pole 

rλ is the r-th pole 
z = eλr ∆t 
 These correlation functions are used to formulate a Hankel 
matrix.  
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Using a specific number of samples a set of equations is 
obtained. 
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The β  values are the coefficients of the Prony’s equation 
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Once these coefficients are known the roots of the Prony’s 

equation, tkk
r

rez ∆= λ are found. From these roots the natural 
frequency, the damped modal frequency and the damping 
ratio is obtained after conversion in Laplace domain. 

The mode shapes are obtained using these values in 
equation for )( tkRij ∆ . LSCE method is thus a two stage 

method as the mode shapes are estimated only in the second 
stage. 

2.3.4 Eigenvalue Realization Algorithm 
In the Eigenvalue Realization Algorithm (ERA) technique, 
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Juang [15], uses decaying samples in time. Each decaying 
time samples are represented as, 

0)( uPDky k=  
The set of samples are represented as, 
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These decaying time domain samples are used to form 
two Hankel matrices. These two matrices are just one time-
step offset from each other.  
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The observability (Γ ) and controllability (Λ ) matrices 

are obtained from these Hankel matrices. 

ΛΓ=
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In Eigenvalue Realization Algorithm (ERA) technique, 
Juang [15], SVD of first Hankel matrix is taken so Γ and Λ can 
be expressed as, 
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Discrete time system matrix is estimated as, 

    
11 )1( −− ΛΓ= HD  

To simplify the inverse calculation, reduced matrices Un, Sn 
and Vn are used where modes ofnumber 2×=n . 
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Using this discrete time system matrix the eigenvalues and 
eigenvectors are obtained. 
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The eigenvalues nλ are then found using relation 
ttt nnnn ∆=⇒= /)ln()exp( µλλµ  

The mode shapes need to be transformed as follows, 
 ]'[][ φφ P=  
Where 
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2.3.5 Transmissibility-based Operational Modal 
Analysis 

Transmissibility-based Operational Modal Analysis 
(TOMA), Devriendt [16], uses transmissibilities to find modal 
parameters. The transmissibility is defined as the ratio of 
output i and a reference output j. 
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Thus under different loading conditions ‘a’ and ‘b’, the 
transmissibilities exactly cross at the structure resonance. 
Hence, the difference is zero when nωω →  
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Thus the system poles correspond to the poles of inverse of 
the difference function. 
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3 EXPERIMENTAL SET-UP 
The experimental setup used for time-data measurement at 

the response points is given in this section. The beam 
specifications are given Table 1. 
Table 2: Beam specifications 

Length(mm)  525 
Width(mm)  50.2 
Depth(mm)  6 
Mass(kg)  1.566 
Density(kg/m3)  9559.1 

 

 
Figure 1: Experimental Setup and Accelerometer 

 
The cantilever beam is divided in 20 equal parts. 

Numbering starts from the fixed end, which is fixed to the 
table using C-clamp, as shown in Figure 1. The accelerometer 
is attached at point number 15 by using beeswax. The 
accelerometer used is 3 axes type. It is attached by keeping its 
X-axis oriented in global Z-direction. B&K four channel FFT 
analyzer is used for data measurement. The sampling 
frequency used is 4096Hz. 

Readings are taken using roving hammer technique, i.e. by 
hitting the beam with impact hammer at all the points. Four 
sets of readings are taken by changing the hammer tips. Four 
different tips are used - black, red, plastic and steel tip. The tip 
hardness increase in the following order - black, red, plastic 
and steel tips. The time data obtained is processed using 
MatLab code to find the mode parameters. 
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4 RESULTS & ANALYSIS 
4.1 Analytical Method 

The analytical values of the natural frequencies and 
the mode shapes for cantilever beam are given in this 
section. These values are used as benchmark results and are 
calculated using formulae discussed in section 2.1 
Analytical Method. The obtained values for the natural 
frequencies are given in Table 3 and the analytical mode 
shapes are shown in Figure 2. 

Table 3: Natural Frequencies of a Cantilever Beam 
Mode (n) ωn (Hz) 

1 16.482 
2 103.29 
3 289.22 
4 566.76 
5 936.89 

 
4.2 Comparative Analysis - Analytical & EMA  

In this section the analytical natural frequencies and 
mode shapes are compared with the corresponding 
experimental values obtained using MatLab code for 
classical EMA. All the four datasets obtained using black, 
red, plastic and steel hammer tips are processed using 
classical EMA. For each mode the results from each dataset 
are compared with each other. This comparative study is 
used to finalize the dataset selection for further processing 
using OMA for studying a particular mode. The selected 
datasets are highlighted in Table 4. The comparative results 
are shown in Table 4. The frequency values are compared 
using the absolute error and the mode shapes are compared 
using Modal Assurance Criteria (MAC). The MAC value for 
two vectors is calculated as follows, 

( )( )bbaa

ba
baMAC

HH

H 2

),( =  

Where 
Ha  is Hermitian transpose of vector a. 

 

 
a) Mode 1 

 
b) Mode 2 

 
c) Mode 3 

 
d) Mode 4 

 
e) Mode 5 

Figure 2: Analytical Mode Shapes 
 

The blacktip database is selected for the first mode. Though 
the absolute error in the frequency value is less for the steel tip 
dataset, the MAC values are very low indicating bad 
prediction of the mode shapes. Hence the black tip dataset is 
selected for OMA study discussed in the 4.3 Comparative 
Analysis - EMA & OMA. The plastic tip dataset shows better 
prediction of the frequency values, but blacktip dataset is 
selected. The higher error (27.19%) in frequency value 
calculated for the black tip dataset, is due to the fact that the 
sampling frequency used for data collection is 4096Hz, thus 
the frequency step was 4Hz. If a smaller sampling frequency is 
used this error can be improved. However, the higher modes 
may not be obtained hence 4096Hz is used. 

 
Table 4: Comparative Analysis - Analytical & EMA 

Method 
Mode 1 

Freq(Hz) % error MAC 

Analytical 16.48 NA NA 
Black Tip - EMA 12.00 -27.19% 95.48% 
Red Tip - EMA 12.00 -27.19% 95.51% 
Plastic Tip - EMA 13.00 -21.13% 96.39% 
Steel Tip - EMA 13.25 -19.61% 27.03% 

Method Mode 2 

Freq(Hz) % error MAC 

Analytical 103.29 NA NA 
Black Tip - EMA 98.60 -4.54% 82.38% 
Red Tip - EMA 96.00 -7.06% 96.65% 
Plastic Tip - EMA 93.65 -9.33% 92.22% 
Steel Tip - EMA 101.30 -1.93% 87.51% 

Method Mode 3 
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Freq(Hz) % error MAC 

Analytical 289.22 NA NA 
Black Tip - EMA 297.40 2.83% 91.89% 
Red Tip - EMA 248.00 -14.25% 79.68% 
Plastic Tip - EMA 296.65 2.57% 96.77% 
Steel Tip - EMA 294.25 1.74% 98.28% 

Method 
Mode 4 

Freq(Hz) % error MAC 

Analytical 566.76 NA NA 
Black Tip - EMA 548.40 -3.24% 14.39% 
Red Tip - EMA 504.80 -10.93% 53.16% 
Plastic Tip - EMA 542.85 -4.22% 87.84% 
Steel Tip - EMA 525.55 -7.27% 85.54% 

Method 
Mode 5 

Freq(Hz) % error MAC 

Analytical 936.89 NA NA 
Black Tip - EMA 852.40 -9.02% 20.40% 
Red Tip - EMA 802.40 -14.35% 24.03% 
Plastic Tip - EMA 856.00 -8.63% 66.48% 
Steel Tip - EMA 860.10 -8.20% 77.01% 

 
In case of second mode, the best results are obtained for red 

tip dataset. The absolute error in frequency prediction is little 
higher but the MAC value (96.65%) is in best agreement. 
Similarly, for the third mode the plastic tip dataset MAC value 
(96.77%) is in best agreement, though steel tip dataset also give 
good results. The plastic tip dataset gives best results for the 
fourth mode (MAC value 87.84%) and the fifth mode is 
prediction is best using the steel tip dataset, (MAC value 
77.01%). 

It is clear that the softer tips identify the lower modes and 
as the hardness increases, the higher modes are identified. The 
dataset selection for each mode is given in Table 5.  
Table 5: Database Selection - OMA 

Mode Database 
Mode 1  Black Tip Database 
Mode 2  Red Tip Database 
Mode 3  Plastic Tip Database 
Mode 4  Plastic Tip Database 
Mode 5  Steel Tip Database 

The analytical mode shapes are compared with the mode 
shapes obtained using EMA. The mode shapes only for the 
selected dataset for each mode are shown in Figure 3. 

 

 
a) Mode 1 

 
b) Mode 2 

 
c) Mode 3 

 
d) Mode 4 

 
e) Mode 5 

Figure 3:Mode Shapes - Analytical & EMA 
 

4.3 Comparative Analysis - EMA & OMA  
This section gives comparative analysis of the frequency and 
mode shape results obtained using EMA and OMA. Using the 
comparative study from 4.2 Comparative Analysis - Analytical 
& EMA, Table 4, the highlighted datasets are selected for 
OMA. The list of selected dataset for each mode is given in 
Table 5. 

The selected database for each mode is processed using all 
the five OMA techniques discussed in 2.3 Operational Modal 
Analysis (EMA). A comparative analysis for each mode using 
all the five techniques for OMA is given in Table 6. MAC is 
used for comparison of mode shapes obtained using EMA and 
OMA. 

 
Table 6: Comparative Analysis - EMA & OMA 

Method 
Mode 1 - (Black Tip) 

Freq(Hz) abs error MAC 
EMA 12.00 NA NA 
OMA-BFD(PP) 16.00 33.33% 96.94% 
OMA-FDD 16.00 33.33% 95.97% 
OMA-ERA 12.98 8.20% 96.41% 
OMA-LSCE 14.51 20.89% 96.94% 
OMA-TOMA 16.00 33.33% 96.94% 

Method 
Mode 2 - (Red Tip) 

Freq(Hz) abs error MAC 
EMA 96.00 NA NA 
OMA-BFD(PP) 92.00 4.17% 85.15% 
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OMA-FDD 92.00 4.17% 75.68% 
OMA-ERA 109.00 13.54% 68.39% 
OMA-LSCE 109.98 14.56% 68.39% 
OMA-TOMA 116.00 20.83% 38.71% 

Method 
Mode 3 - (Plastic Tip) 

Freq(Hz) abs error MAC 
EMA 296.65 NA NA 
OMA-BFD(PP) 248.00 16.40% 79.52% 
OMA-FDD 248.00 16.40% 79.27% 
OMA-ERA 240.58 18.90% 80.07% 
OMA-LSCE 299.51 0.97% 82.06% 
OMA-TOMA 336.00 13.26% 36.36% 

Method 
Mode 4 - (Plastic Tip) 

Freq(Hz) abs error MAC 
EMA 542.85 NA NA 
OMA-BFD(PP) 543.00 0.03% 92.17% 
OMA-FDD 543.00 0.03% 90.80% 
OMA-ERA 644.04 18.64% 20.95% 
OMA-LSCE 543.46 0.11% 91.95% 
OMA-TOMA 646.00 19.00% 21.04% 

Method 
Mode 5 - (Steel Tip) 

Freq(Hz) abs error MAC 
EMA 860.10 NA NA 
OMA-BFD(PP) 773.00 10.13% 79.92% 
OMA-FDD 773.00 10.13% 55.44% 
OMA-ERA 974.62 13.31% 0.36% 
OMA-LSCE 941.90 9.51% 0.25% 
OMA-TOMA 1104.00 28.36% 1.80% 

 
Using the comparative analysis given in Table 6, it is 

observed that the modal parameters for the first mode are 
predicted using all the five techniques with good accuracy. 
The higher error (33%) in the natural frequency prediction is 
due to the sampling frequency selection, which is already 
discussed in the 4.2 Comparative Analysis - Analytical & 
EMA. 

The absolute error in the natural frequency for the second 
mode is reduced as compared to the first mode. The maximum 
error observed is (20.83%), but if the obtained natural 
frequency values are compared with the analytical frequency 
value (103.29Hz), the maximum absolute error reduces to 
(12.30%). Except for the TOMA technique, all other techniques 
predict the mode shapes with reasonable accuracy. 

In case of third mode the maximum absolute error in the 
natural frequency is obtained using ERA technique (18.90%). 
When compared to the analytical frequency value the 
maximum absolute error reduces to 16.82%. Similar to the 
second mode, except for the TOMA technique, all other 
techniques predict the third mode shapes with reasonable 
accuracy. 

The fourth modal parameters, obtained using the plastic tip 
dataset, are predicted with very good accuracy using the BFD, 
FDD and LSCE techniques. The ERA and TOMA techniques 
perform very poorly in case of the fourth mode. 

The fifth natural frequency is predicted with reasonable 
accuracy except using TOMA technique (maximum absolute 
error 28.36%). However, the mode shape prediction is poor in 
most of the techniques except BFD technique. The mode shape 
obtained using FDD though having greater error, is 
considered as the higher error is contributed due to variation 
near the free end of the cantilever beam. 

The mode shapes for the highlighted OMA techniques in 
Table 6, are shown in Figure 4. These mode shapes are 
compared with those obtained using EMA. 

 

 
a) Mode 1 

 
b) Mode 2 

 
c) Mode 3 

 
d) Mode 4 

 
e) Mode 5 

 
Figure 4: Mode Shapes - EMA & OMA 

 
Though BFD and FDD techniques are simple techniques, 

both the techniques can be used for predicting all the five 
modes of the considered cantilever beam. These are 
numerically less intensive methods. The ERA technique works 
well in predicting lower modes. For higher modes though the 
natural frequencies are predicted with reasonable accuracy, 
the predicted mode shapes shown very high error. The time 
domain LSCE technique give very good accuracy in predicting 
the natural frequencies. Except for the fifth mode shape, all the 
other mode shapes are predicted with good accuracy using 
LSCE technique. TOMA technique works well only in case of 
the first mode. For all the other modes high error is obtained. 

5 CONCLUSIONS 
In the comparative study conducted for EMA and analytical 
results it is concluded that EMA technique identify all the 
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modes. The accuracy of the results for lower modes is good for 
dataset obtained using soft tip hammer such as black tip, and 
that for higher modes is good for dataset obtained using hard 
tip hammer such as steel tip. Best results for EMA are taken 
for further comparison with OMA. 

The results from five different OMA techniques are studied 
for each mode. The results obtained using OMA are compared 
with EMA using absolute error for the natural frequency and 
MAC values for the mode shapes. It is observed that all the 
five OMA techniques give accurate result for the first mode 
shape (least MAC value 95.97%). For the second and third 
modes, except for the TOMA technique, all the remaining four 
techniques (BFD, FDD, ERA and LSCE) give reasonably 
accurate results (least MAC value 68.39%). The ERA method 
fails to identify the fourth and fifth mode shape. The fifth 
mode shape is identified by the BFD and FDD methods. 

All the five methods identify the natural frequencies with 
reasonable accuracy. The higher absolute error (33.33%) in the 
first natural frequency can be improved by changing the 
sampling frequency during data measurement. The OMA 
techniques can thus replace EMA, especially in situations 
where exciting the structure using a hammer or a shaker is not 
possible or in case where operating and laboratory boundary 
conditions are different. OMA can thus be used for the modal 
parameter extraction of the overhanging machine components 
where the data collected under exact operating conditions is 
important for better accuracy in the modal parameter 
extraction. 
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